Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers.

نویسندگان

  • Lu-Jian Chen
  • Ling-Li Gong
  • Ya-Li Lin
  • Xin-Yi Jin
  • Han-Ying Li
  • Sen-Sen Li
  • Kai-Jun Che
  • Zhi-Ping Cai
  • Chaoyong James Yang
چکیده

We report a magnetically transportable microlaser with cholesteric liquid crystal (CLC) core-shell structure, operating in band-edge mode. The dye doped CLC shells as a water-in-oil-in-water (W/O/W) double emulsion were fabricated by microfluidics. Water-dispersible Fe3O4 magnetic nanoparticles were incorporated in the inner aqueous phase by taking advantage of the immiscibility with the middle CLC oil phase. The influence of temperature and shell thickness on laser properties was discussed in detail. The non-invasive manipulation of microlasers was realized under a magnetic field. The dependence of velocity on the viscosity of the carrying fluid and size of the core-shell structure was theoretically analyzed and experimentally investigated using a prototype electromagnetic platform. We also discussed the design principles for this type of DDCLC core-shell structure. Such magnetically transportable microlasers offer promise in in-channel illumination applications requiring active control inside micro-channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we ...

متن کامل

Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow.

This study presents a simple microfluidic approach to the rapid fabrication of complex-shaped microfibers (e.g., single hollow, double hollow, and microbelt), with highly uniform structures, based on a combination of the spontaneous formation of polymeric jet streams and in situ photopolymerization. Two laminar flows of a photocurable fluid and a liquid template (nonpolymerizing fluid) spontane...

متن کامل

Colloidal cholesteric liquid crystal in spherical confinement

The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal for...

متن کامل

Waltzing route toward double-helix formation in cholesteric shells.

Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defe...

متن کامل

Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration

We report the results of our study on the role of microfluidic infiltration technique in improving the coupling characteristics of dual-core photonic crystal fiber (PCF) couplers. Using the finite element method (FEM), we evaluate the effective mode area, dispersion and coupling parameters of an infiltrated dual-core PCF. We use these parameters to design a compact and reconfigurable coupler by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2016